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Verification of Crystal Elastic Anisotropy Theory by Ultrasonic Diffraction Experiments 
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This paper points out an indirect but convincing experimental verification of certain theories concerning 
elastic-wave propagation in anisotropic media. Relations between the Poynting vector and the propaga- 
tion vector for longitudinal wave propagation near, but not exactly parallel to, certain pure-mode axes 
permit the calculation of the ultrasonic diffraction from large single apertures (transducers) oriented for 
propagation exactly along the pure-mode axes. Then the diffraction loss versus distance, measured in 
oriented single crystals, permits the verification of the theories concerning these relations and concerning 
ultrasonic diffraction. It is shown that five items of theory have been verified by the ultrasonic diffraction 
measurements. 

Introduction 
Previous theoretical work by Musgrave (1954) and 
Waterman (1959) has demonstrated that for propaga- 
tion directions near pure-mode axes of three, four, and 
sixfold symmetry, the phase velocity of longitudinal 
ultrasonic waves can be expressed as V=Vo(1-b02), 
neglecting terms of higher order in 0. The angle 0 is 
measured between the pure-mode axis and the propa- 
gation vector [i. The coefficient b is a function of the 
elastic moduli of the crystal, a different function for 
each pure-mode axis. The velocity along the pure-mode 
axis is vo. Since the magnitude of the propagation vec- 
tor is IPl = 2rcf/v, this magnitude can be written (Papa- 
dakis, 1963) as [~l=~0(l+b02). Lighthill (1960) has 
shown that the energy flow in a wave must go along 
the Poynting vector P, and that the Poynting vector 
deviates from the propagation vector as long as the 
propagation vector is not parallel to a pure-mode axis 
in an anisotropic crystal. Waterman (1959) has written 
this deviation angle dp in terms of the elastic moduli of 
crystals and the angle 0. It works out to be d v-- 2bO for 
the symmetries mentioned above. There is no azi- 
muthal dependence for these symmetries. Since b may 
be positive or negative, the Poynting vector may devi- 
ate further or less far from the pure-mode axis than 
does the propagation vector. 

Summary of theory and computations 

The author utilized these theoretical concepts (Papa- 
dakis, 1963, 1964, 1966) to generalize the ultrasonic 
diffraction theory of Seki, Granato & Truell (1956) to 
include longitudinal waves along pure-mode axes of 
three, four, and sixfold symmetry. This theory is for 
circular piston sources of ultrasound and circular, co- 
axial, equal-sized receivers which are sensitive to both 
pressure and phase. Both source and receiver are many 
wavelengths in diameter. The theory applies to pulse- 
echo experiments (Roderick & Truell, 1952) with piezo- 

electric plate transducers on specimens with plane- 
parallel faces. The output of the receiver is calculated 
in terms of the integrated amplitude to be observed 
(translated into dB loss) and the apparent phase shift 
relative to a plane wave. It is essentially an antenna 
problem with every element of the transmitter radiating 
to every element of the receiver. The amplitude (loss) 
and phase are calculated as functions of distance be- 
tween the planes of the transmitter and receiver. The 
Rayleigh integral (Seki et al., 1956; Strutt, 1945) is used 
to express the radiation at a field point. In the general- 
ization (Papadakis, 1963, 1964, 1966), the plane of the 
circular piston source is assumed exactly perpendicular 
to the pure-mode axis. Radiation must reach a field 
point by means of a Poynting vector along a radius 
vector r from an element of area on the transmitter. 
This Poynting vector must deviate from the pure-mode 
axis for most elements, and hence the propagation 
vector must deviate from both. 

The pure-mode axis, the propagation vector, and 
the Poynting vector are coplanar in the case of the 
symmetries mentioned, however. Use of 0 and dp to 
express the spatial part of the phase [I. r in the Rayleigh 
integral results in a scalar quantity/~o[r][1 + b(1 - 2b)02] 
in the argument of the exponential function. Numerical 
integration over the transmitter area yields the field at 
a point, and subsequent integration over the receiver 
area yields the receiver output. 

The results (Papadakis, 1966) of the numerical inte- 
grations are as follows. 

(1) The loss as a function of distance is not mono- 
tonic but shows peaks and dips in the near field. 

(2) The last peak, peak 'A', in loss is at SA----1"6 for 
b = 0  as found by Seki et al. (1956). S is the Seki param- 
eter, a normalized dimensionless distance parameter, 
S =z2/a 2. Here z is distance (transmitter to receiver), 
2 is wavelength, and a is transmitter and receiver radius. 
The scale factor is the Fresnel length. 

(3) The abscissa is scaled as a function of b in such a 
way that SA = 0"8(0"5- b). For physical reasons, b can- 
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not be greater than 0"5, but may range over - o o  < b 
<0"5. 

(4) The loss in the far field becomes monotonic in- 
creasing logarithmically. Recently, Benson & Kiyohara 
(1974) have shown that the rate for amplitude is indeed 
6 dB per doubling of distance for b = 0. That is, in the 
isotropic case the diffraction reduces to spherical 
spreading far from the source. 

(5) The phase has plateaus where the loss has peaks. 
The excess phase relative to a plane wave increases 
asymptotically to n/2 rad. 

Summary of experimental results 

Pulse-echo ultrasonic attenuation experiments (Papa- 
dakis, 1960, 1963, 1964; Roderick & Truell, 1952) and 
velocity experiments (Papadakis, 1967) have been used 
to show that the theory as described predicts the dif- 
fraction behavior of ultrasonic waves in solids. In par- 
ticular, the last loss peak 'A' falls at the location SA 
predicted in point (3) above. The tabulation from Papa- 
dakis (1966) is summarized in Table 1, which shows 
marked agreement between theory and experiment 
concerning the abscissa of peak 'A'. 

Table 1. Experiments on peak positions with curcular 
all-plated longitudinal transducers 

SA SA 
Material b theory experiment 
Zn c axis -5 .23 0-137 not seen 
Cd c axis - 1.408 0-410 0"6 
Ge [,100] - 0.581 0.74 0.7 
CaCO3 threefold - 0.567 0.75 0"8 
Si [100] -0-461 0"83 0-9 
Quartz threefold - 0.250 1.07 1.1 
NaC1 [,111] -0.212 1.12 1.3 
Steel 0.000 1.60 1.8 
Si [,111] 0-162 2.37 2.4 
NaC1 [-100] 0.196 2.63 2.7 
KBr [100] 0-373 6"30 6"3 
KI [100] 0"380 6"67 5-7 

In the velocity experiments (Papadakis, 1967), the 
apparent velocities calculated from raw data on travel 
time showed a trend versus total path distance. Meas- 
urements of travel time had been made between echoes 
i and N with N from 2 to 15 in various specimens. The 
parameters were such that the echoes were in the near 
and/or intermediate field of the transducers. Specimens 
were fused quartz (b=0), silicon [100] (b=-0"461),  

silicon [111] (b=0.162), and silicon [110] (b taken as 0 
since it varies from positive to negative with azimuth). 
Subsequently, the travel times were corrected for dif- 
fraction by applying the phase shift calculated from 
theory (Papadakis, 1966). Recalculation of the veloci- 
ties showed that the trend versus distance had been re- 
moved, and that the average velocity for each specimen 
had a smaller standard deviation than with the raw 
data (Papadakis, 1967). 

Implications: theories verified 

The attenuation and velocity data mean that the be- 
havior (in amplitude and phase) of the waves in the 
near field and in the intermediate range before the far 
field in solids is predicted correctly by the theory. The 
implications are that (1) the assumptions about the 
piston-source nature of the transducer as transmitter 
and the phase-and-amplitude sensitivity of the trans- 
ducer as receiver are correct, (2) the theory of Lighthill 
(1960) concerning the transmission of energy from 
point to point by the Poynting vector as if a plane wave 
with a definite propagation vector were involved is 
correct, (3) the formulation of Waterman (1959)is 
correct for v and dp in terms of b and 0 for longitudinal 
elastic waves along the three, four, and sixfold axes of 
symmetry, (4) the use of Waterman's (1959) formulation 
for v and dp by the author (Papadakis, 1963, 1964, 1966) 
to derive an expression for Ii. r in the Rayleigh integral 
(Seki et al., 1956; Strutt, 1945) is correct and (5) the 
extension of the Rayleigh integral, first derived for 
fluids, to solids is correct. 
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